首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   34篇
  2021年   4篇
  2020年   3篇
  2018年   3篇
  2016年   13篇
  2015年   10篇
  2014年   6篇
  2013年   8篇
  2012年   9篇
  2011年   9篇
  2010年   7篇
  2009年   9篇
  2008年   5篇
  2007年   4篇
  2006年   7篇
  2005年   9篇
  2004年   8篇
  2003年   6篇
  2002年   8篇
  2001年   3篇
  2000年   6篇
  1999年   11篇
  1998年   14篇
  1997年   6篇
  1996年   9篇
  1995年   10篇
  1994年   2篇
  1993年   7篇
  1992年   5篇
  1991年   5篇
  1990年   4篇
  1989年   6篇
  1988年   5篇
  1987年   5篇
  1986年   2篇
  1984年   2篇
  1983年   9篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1978年   5篇
  1977年   2篇
  1976年   4篇
  1969年   5篇
  1965年   1篇
  1964年   1篇
  1963年   1篇
  1951年   1篇
  1949年   1篇
  1934年   1篇
排序方式: 共有277条查询结果,搜索用时 31 毫秒
81.
82.
Matrix metalloproteinase (MMP)-19 and MMP-20 (enamelysin) are two recently discovered members of the MMP family. These enzymes are involved in the degradation of the various components of the extracellular matrix (ECM) during development, haemostasis and pathological conditions. Whereas MMP-19 mRNA is found widely expressed in body tissues, including the synovium of normal and rheumatoid arthritic patients, MMP-20 expression is restricted to the enamel organ. In this study we investigated the ability of MMP-19 and MMP-20 to cleave two of the macromolecules characterising the cartilage ECM, namely aggrecan and the cartilage oligomeric matrix protein (COMP). Both MMPs hydrolysed aggrecan efficiently at the well-described MMP cleavage site between residues Asn(341) and Phe(342), as shown by Western blotting using neo-epitope antibodies. Furthermore, the two enzymes cleaved COMP in a distinctive manner, generating a major proteolytic product of 60 kDa. Our results suggest that MMP-19 may participate in the degradation of aggrecan and COMP in arthritic disease, whereas MMP-20, due to its unique expression pattern, may primarily be involved in the turnover of these molecules during tooth development.  相似文献   
83.
Considerable interest has been focused on the role of myosin light chain LC(2) in the contraction of vertebrate striated muscle. A study was undertaken to further our investigations (Moss, R.L., G.G. Giulian, and M.L. Greaser, 1981, J. Biol. Chem., 257:8588-8591) of the effects of LC(2) removal upon contraction in skinned fibers from rabbit psoas muscles. Isometric tension and maximum velocity of shortening, V(max), were measured in fiber segments prior to LC(2) removal. The segments were then bathed at 30 degrees C for up to 240 min in a buffer solution containing 20 mM EDTA in order to extract up to 60 percent of the LC(2). Troponin C (TnC) was also partially removed by this procedure. Mechanical measurements were done following the EDTA extraction and the readditions of first TnC and then LC(2) to the segments. The protein subunit compositions of the same fiber segments were determined following each of these procedures by SDS PAGE of small pieces of the fiber. V(max) was found to decrease as the LC(2) content of the fiber segments was reduced by increasing the duration of extraction. EDTA treatment also resulted in substantial reductions in tension due mainly to the loss of TnC, though smaller reductions due to the extraction of LC(2) were also observed. Reversal of the order of recombination of LC(2) and TnC indicated that the reduction in V(max) following EDTA treatment was a specific effect of LC(2) removal. These results strongly suggest that LC(2) may have roles in determining the kinetics and extent of interaction between myosin and actin.  相似文献   
84.
Keratan sulfate is thought to influence the cleavage of aggrecan by metalloenzymes. We have therefore produced a recombinant substrate, substituted with keratan sulfate, suitable for the study of aggrecanolysis in vitro. Recombinant human G1-G2 was produced in primary bovine keratocytes using a vaccinia virus expression system. Following purification and digestion with specific hydrolases, fluorophore-assisted carbohydrate electrophoresis was used to confirm the presence of the monosulfated Gal-GlcNAc6S and GlcNAc6s-Gal disaccharides and the disulfated Gal6S-GlcNAc6S disaccharides of keratan sulfate. Negligible amounts of fucose or sialic acid were detected, and the level of unsulfated disaccharides was minimal. Treatment with keratanases reduced the size of the recombinant G1-G2 by approximately 5 kDa on SDS-PAGE. Treatment with N-glycosidase F also reduced the size of G1-G2 by approximately 5 kDa and substantially reduced G1-G2 immunoreactivity with monoclonal antibody 5-D-4, indicating that keratan sulfate on the recombinant protein is N-linked. Cleavage of G1-G2 by aggrecanase was markedly reduced when keratan sulfate chains were removed by treatment with keratanase, keratanase II, endo-beta-galactosidase, or N-glycosidase F. These results indicate that modification of oligosaccharides in the aggrecan interglobular domain with keratan sulfate, most likely at asparagine residue 368, potentiates aggrecanase activity in this part of the core protein.  相似文献   
85.
J Li  R L Last 《Plant physiology》1996,110(1):51-59
The first step of tryptophan biosynthesis is catalyzed by anthranilate synthase (AS), which is normally subject to feedback inhibition by tryptophan. Three independent trp5 mutants defective in the Arabidopsis thaliana AS alpha subunit structural gene ASA1 were identified by selection for resistance to the herbicidal compound 6-methylanthranilate. In all three mutants these biochemical changes are caused by a single amino acid substitution from aspartate to asparagine at residue position 341. Compared with the enzyme from wild-type plants, the tryptophan concentration causing 50% inhibition of AS activity in the trp5 mutant increased nearly 3-fold, the apparent Km for chorismate decreased by approximately 50%, and the apparent Vmax increased 60%. As a consequence of altered AS kinetic properties, the trp5 mutants accumulated 3-fold higher soluble tryptophan than wild-type plants. However, even though the soluble tryptophan levels were increased in trp5 plants, the concentrations of five tryptophan biosynthetic proteins remained unchanged. These data are consistent with the hypothesis that the reaction catalyzed by A. thaliana AS is rate limiting for the tryptophan pathway and that accumulation of tryptophan biosynthetic enzymes is not repressed by a 3-fold excess of end product.  相似文献   
86.
The entire mitochondrial genome was sequenced in a prostriate tick, Ixodes hexagonus, and a metastriate tick, Rhipicephalus sanguineus. Both genomes encode 22 tRNAs, 13 proteins, and two ribosomal RNAs. Prostriate ticks are basal members of Ixodidae and have the same gene order as Limulus polyphemus. In contrast, in R. sanguineus, a block of genes encoding NADH dehydrogenase subunit 1 (ND1), tRNA(Leu)(UUR), tRNA(Leu)(CUN), 16S rDNA, tRNA(Val), 12S rDNA, the control region, and the tRNA(Ile) and tRNA(Gln) have translocated to a position between the tRNA(Glu) and tRNA(Phe) genes. The tRNA(Cys) gene has translocated between the control region and the tRNA(Met) gene, and the tRNA(Leu)(CUN) gene has translocated between the tRNA(Ser)(UCN) gene and the control region. Furthermore, the control region is duplicated, and both copies undergo concerted evolution. Primers that flank these rearrangements confirm that this gene order is conserved in all metastriate ticks examined. Correspondence analysis of amino acid and codon use in the two ticks and in nine other arthropod mitochondrial genomes indicate a strong bias in R. sanguineus towards amino acids encoded by AT-rich codons.   相似文献   
87.
Using the strictly neutral model as a null hypothesis, we tested for deviations from expected levels of nucleotide polymorphism at the alcohol dehydrogenase locus (Adh-1) within and among four species of pocket gophers (Geomys bursarius major, G. knoxjonesi, G. texensis llanensis, and G. attwateri). The complete protein-encoding region was examined, and 10 unique alleles, representing both electromorphic and cryptic alleles, were used to test hypotheses (e.g., the neutral model) concerning the maintenance of genetic variation. Nineteen variable sites were identified among the 10 alleles examined, including 9 segregating sites occurring in synonymous positions and 10 that were nonsynonymous. Several statistical methods, including those that test for within-species variation as well as those that examine variation within and among species, failed to reject the null hypothesis that variation (both within and between species of Geomys) at the Adh locus is consistent with the neutral theory. However, there was significant heterogeneity in the ratio of polymorphism to divergence across the gene, with polymorphisms clustered in the first half of the coding region and fixed differences clustered in the second half of the gene. Two alternative hypotheses are discussed as possible explanations for this heterogeneity: an old balanced polymorphism in the first half of the gene or a recent selective sweep in the second half of the gene.   相似文献   
88.
Antioxidant isoenzymes function to eliminate free radicals and are localized to several different subcellular compartments within the plant cell. In Arabidopsis thaliana exposed to ozone (O3), we have monitored the accumulation of mRNAs encoding both cytosolic and chloroplastic antioxidant isoenzymes. Two different O3 exposure protocols yielded similar results. Upon O3 exposure, the steady-state levels of three mRNAs encoding cytosolic antioxidant isoenzymes (ascorbate peroxidase, copper/zinc superoxide dismutase, and glutathione S-transferase) increase. The glutathione S-transferase mRNA responds very quickly to the oxidative stress (2-fold increase in 30 min) and is elevated to very high levels, especially in plants grown with a 16-h photoperiod. In contrast, O3 exposure causes a decline in the levels of two chloroplastic antioxidant mRNAs (iron superoxide dismutase and glutathione reductase) and two photosynthetic protein mRNAs (chlorophyll a/b-binding protein and ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit). We show that this decline does not include all mRNAs encoding chloroplast-targeted proteins, since O3 causes an elevation of mRNA encoding the chloroplast-localized tryptophan biosynthetic enzyme phosphoribosylanthranilate transferase. Two alternative hypotheses that could explain this differential mRNA accumulation in response to O3 are discussed.  相似文献   
89.
90.
Xenopus laevis (the South African clawed toad) can respond to thymus dependent (TD) and thymus independent (TI) antigens. However, the response to trinitrophenylated Ficoll (TNP-Ficoll), a TI-2 antigen in mammals, is thymus dependent in Xenopus. Polyvinylpyrrolidone (PVP), classed as a TI antigen in mammals, is also a TI antigen in Xenopus, but responses to PVP and TNP-PVP are thymus regulated. As with TNP-Ficoll, capacity to respond to TNP-PVP diminishes during metamorphosis, and tolerance can be induced via the stimulation of TD suppression with trinitrobenzene sulphonic acid. Animals treated with N-methyl-N-nitrosourea and adult-thymectomised Xenopus, which lack certain TD responses, can nevertheless respond to TNP-PVP. Based on this and other information, it is concluded that TNP-PVP should be classed as a TI-2 antigen in Xenopus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号